XL4 OCS

Datasheet for HE-XC1E0-22, HE-XC1E2-22, HE-XC1E3-22, HE-XC1E4-22, HE-XC1E5-22 HEXT251C100-22, HEXT251C112-22, HEXT251C113-22, HEXT251C114-22, HEXT251C115-22

1. Specifications

2. Dimensions \& Panel Cutout

3. Installation Procedures

1. Carefully locate an appropriate place to mount the XL4. Be sure to leave enough room at the top of the unit for insertion and removal of the microSD ${ }^{\text {TM }}$ card. Also leave enough room at the bottom for the insertion and removal of USB FLASH drives
2. Carefully cut the host panel per the diagram on Page 1, creating a $92 \mathrm{~mm} \times 92 \mathrm{~mm} \pm 0.1 \mathrm{~mm}$ opening into which the XL4 may be installed. If the opening is too large, water may leak into the enclosure, potentially damaging the XL4. If the opening is too small, the OCS may not fit through the hole without damage.
3. Remove all Removable Terminals from the XL4. Insert the XL4 through the panel cutout (from the front). The gasket needs to be between the host panel and the XL4.
4. Install and tighten the four mounting clips (provided in the box) until the gasket forms a tight seal (max torque 1.5Nm / 13.2Lb-in).
5. Reinstall the XL4 I/O Removable Terminal Blocks. Connect communications cables to the serial port, USB ports, Ethernet port, and CAN port as required.

4. Ports \& Connectors

XL4 Connector Locations

\square			MJ1/2 Serial Ports MJ1: RS-232 w/Full Handshaking		
	in	MJ1		MJ2	
		Signal	Direction	Signal	Direction
	8	TXD	OUT	-	-
	7	RXD	IN	-	-
	6	0 V	Ground	0 V	Ground
	5	+5V@60mA	OUT	+5V@60mA	OUT
	4	RTS	OUT	-	-
	3	CTS	IN	-	-
	2	-	-	RX- / TX-	IN / OUT
	1	-	-	RX+/TX+	IN / OUT

5. Safety

WARNING: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.
WARNING: To avoid the risk of electric shock or burns, always connect the earth ground before making any other connections.
WARNING: To reduce the risk of fire, electrical shock, or physical injury it is strongly recommended to fuse all Power Sources connected to the OCS. Be sure to locate fuses as close to the source as possible.
WARNING: Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.
WARNING: In the event of repeated failure, do not replace the fuse again as a repeated failure indicates a defective condition that will not clear by replacing the fuse.
WARNING: Battery may explode if mistreated. Do Not Recharge, Disassemble or Dispose Of in Fire
WARNING: EXPLOSION HAZARD - BATTERIES MUST ONLY BE CHANGED IN AN AREA KNOWN TO BE NON-HAZARDOUS
Power input and output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods of the National Electric Code, NFPA 70 for installations in the U.S., or as specified in Section 18-1J2 of the Canadian Electrical Code for installations within Canada and in accordance with the authority having jurisdiction. This equipment is suitable for use in Class I, Division 2, Groups A, B, C, and D or Non-hazardous locations only.
WARNING: EXPLOSION HAZARD - Do not disconnect equipment unless power has been switched off or the area is known to be nonhazardous.
WARNING: EXPLOSION HAZARD - Substitution of components may impair suitability for Class 1, Division 2. Digital outputs shall be supplied from the same source as the Operator Control Station. Jumpers on connector JP1 and others shall not be removed or replaced while the circuit is live unless the area is known to be free of ignitable concentrations of flammable gasses or vapors.

6. Technical Support

For assistance and manual updates, contact Technical Support at the following locations:

North America

(317) 916-4274

877-665-5666
http://www.heapg.com
e-mail: techsppt@heapg.com

Europe

(+) 353-21-4321-266
http://www.horner-apg.com e-mail: techsupport@hornerirl.ie

7. Common Cause of Analog Input Tranzorb Failure

A common cause of Analog Input Tranzorb Failure on Analog Inputs Model 2, 3, 4 \& 5: If a $4-20 \mathrm{~mA}$ circuit is initially wired with loop power, but without a load, the Analog input could see 24 Vdc . This is higher than the rating of the tranzorb. This can be solved by NOT connecting loop power prior to load connection, or by installing a low-cost PTC in series between the load and Analog input. See SUP0977-01 for additional details.

NOTE \dagger : Refers to Model 2 - orange (pg.4) Models 3 \& 4 - J1 (pg.5) and
Model 5 - 20mA Analog In (pg.6.)

8. Built-in I/O (Model 2, 3, 4 \& 5)

All XL4 models (except the HE-XCEO) feature built-in I/O. The I/O is mapped into OCS Register space, in three separate areas Digital/Analog I/O, High-Speed Counter I/O, and High-speed Output I/O. Digital/Analog I/O location is fixed starting at 1, but the High-speed Counter and High-speed Output references may be mapped to any open register location. For more details on using the High-Speed
Counter and High-Speed Outputs, see the XL4 OCS User's Manual (MAN0964).

Fixed Address	Digital/Analog I/O Function	XL4 Model			
		2	3	4	5
\%11	Digital Inputs	1-12	1-12	1-24	1-12
	Reserved	13-32	13-31	25-31	13-31
	ESCP Alarm	n/a	32	32	32
\%Q1	Digital Outputs	1-6	1-12	1-16	1-12
	Reserved	7-24	13-24	17-24	13-24
\%Al1	Analog Inputs	1-4	1-2	1-2	1-2
	Reserved	5-12	3-12	3-12	3-12
\%AQ1	Reserved	n/a	1-8	1-8	1-8
	Analog Outputs	n/a	n/a	n/a	9-10
Reserved areas maintain backward compatibility with other XL Series OCS models					

Default Address	High-Speed Counter Function	XL4 Models 2-5
\%l1601	Status Bits	$1-8$
\%Q1601	Command Bits	$1-32$
\%AI0401	Accumulator 1 \& 2	$1-8$
\%AQ0401	Preload \& Match Values	$1-12$
*Starting Address locations for \%I, \%Q, \%AI \& \%AQ may		
be re-mapped by user		

Default Address	High-Speed Output Function	XL4 Models 2-5
\%11617	Status Bits	$1-8$
\%Q1**	Command Bits	$1-2$
n/a	n/a	n / a
\%AQ421	PWM or Pulse-Train Parameters	$1-20$
*Starting Address locations for \%l \& \%AQ may be		
remapped by user		

Model 2 I/O

The XL4 model 2 (HE-XC1E2) features 12 DC Inputs, 6 Relay outputs, and 4 Analog Inputs. The DC Inputs are $12 / 24 \mathrm{Vdc}$ compatible, and can be jumpered for Positive Logic (sinking), or Negative Logic (sourcing). Four of the inputs ($\mathrm{H} 1-\mathrm{H} 4$) can be used for high-speed functions up to 500 kHz . The 12 -bit Analog Inputs can be jumpered for voltage ($0-10 \mathrm{~V}$) or current ($4-20 \mathrm{~mA}$) on a channel by channel basis. The Relay outputs are isolated, supporting AC and DC voltages, with output currents of up to $3 \mathrm{~A} / \mathrm{relay}, 5 \mathrm{~A}$ total.

Model 3 \& Model 4 I/O

The XL4 model 3 (HE-XC1E3) features 12 DC Inputs, 12 DC outputs, and 2 Analog Inputs. The XL4 model 4 (HE-XC1E4) increases the I/O count up to 24 DC Inputs, and 16 DC Outputs and 2 Analog Inputs. The DC Inputs are $12 / 24 \mathrm{Vdc}$ compatible, and can be jumpered for Positive Logic (sinking), or Negative Logic (sourcing). Four of the inputs ($\mathrm{H} 1-\mathrm{H} 4$) can be used for high-speed functions up to 500 kHz . The 12 -bit Analog Inputs can be jumpered for voltage ($0-10 \mathrm{~V}$) or current $(4-20 \mathrm{~mA})$ on a channel by channel basis. The $12 / 24 \mathrm{VDC}$ Outputs feature Electronic Short Circuit protection, and support currents up to 0.5 A per point, and 4A total. Two of the DC Outputs can be used for high speed functions (PWM or PTO). The output frequency is limited by the switching capability of the output drivers (about 10kHz), although an optional accessory (HE-XHSQ) can be added to provide parallel output drivers supporting frequencies up to 200 kHz .

J2 (Black)	Model 3 Name	Model 4 Name
OV	Common	
V+	V+ *	
NC	No Connect	OUT13
Q12	OUT12	
Q11	OUT11	
Q10	OUT10	
Q9	OUT9	
Q8	OUT8	
Q7	OUT7	
Q6	OUT6	
Q5	OUT5	
Q4	OUT4	
Q3	OUT3	
Q2	OUT2 / PWM2	
Q1		OUT1 / PWM1
*V+ Supply for Sourcing Outputs		

J3 (Orange)	Model 4 only Signal Name
113	IN13
114	IN14
115	IN15
116	IN16
117	IN17
118	IN18
119	IN19
120	IN20
121	IN21
122	IN22
123	IN23
124	IN24
0 V	Common

Jumper Setting Details

Location of I/O jumpers (JP1 \& JP3) and wiring connectors
($\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3$ \& J4) with back cover removed.

Note: The Cscape Module Setup configuration must match the selected I/O (JP) jumper settings.
Note: When using JP3 (A1-A2), each channel can be independently configured.
\(\left.$$
\begin{array}{l}\text { (Orange) }\end{array}
$$ \begin{array}{c}Model 4

Name\end{array}\right]\)| J4
 Q16 | OUT16 |
| :---: | :---: |
| Q15 | OUT15 |
| Q14 | OUT14 |

Note:
Model 3 uses
J1 \& and J2 only.
Model 4 uses
J1, J2, J3 \& J4.

Model 5 I/O

The XL4 model 5 (HE-XC1E5) features 12 DC Inputs, 12 DC outputs, with high performance, highly configurable Analog Inputs (2) and Analog Outputs (2). , The DC Inputs are 12/24Vdc compatible, and can be jumpered for Positive Logic (sinking), or Negative Logic (sourcing). Four of the inputs $(\mathrm{H} 1-\mathrm{H} 4)$ can be used for high-speed functions up to 500 kHz . The $12 / 24 \mathrm{VDC}$ Outputs feature Electronic Short Circuit protection, and support currents up to 0.5 A per point, and 4 A total. Two of the DC Outputs can be used for high speed functions (PWM or PTO). The output frequency is limited by the switching capability of the output drivers (about 10kHz), although an optional accessory (HE-XHSQ) can be added to provide parallel output drivers supporting frequencies up to 200 kHz .

The two high resolution Analog Inputs can be configured for $4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$, or $0-100 \mathrm{mV}$ at 14 -bit resolution. They also can be configured for 16 -bit temperature measurement - supporting Thermocouples or RTDs with $0.05^{\circ} \mathrm{C}$ resolution. The Analog Outputs are sourcing, and can be configured for $4-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$ at 14 -bit resolution. Each Analog Input or Output channel can be configured independently for maximum flexibility.

J3 (Orange)	Name
T1+	Tc (1 +) or RTD (1+) or $100 \mathrm{mV}(1+)$
T1-	Tc (1-) or RTD (1-) or $100 \mathrm{mV}(1-)$
T2+	Tc (2+) or RTD (2+) or $100 \mathrm{mV}(2+)$
T2-	Tc (2-) or RTD (2-) or $100 \mathrm{mV}(2-)$
AQ1	10 V or 20 mA Out (1)
AQ2	10 V or 20 mA Out (2)
OV	Common
MA1	$0-20 \mathrm{~mA} \ln (1)$
V1	$0-10 \mathrm{ln}(1)$
OV	Common
MA2	$0-20 \mathrm{~mA} \ln (2)$
V2	$0-10 \mathrm{ln}(2)$
OV	Common

Location of I/O jumpers (JP1-JP4) and wiring connectors (J1-J4) with back cover removed.

Jumper Setting Details

